
UnfoldML: Cost-Aware and Uncertainty-Based
Dynamic 2D Prediction for Multi-Stage Classification

Yanbo Xu1,∗, Alind Khare1,∗, Glenn Matlin1, Monish Ramadoss1,
Rishikesan Kamaleswaran2, Chao Zhang1, Alexey Tumanov1

1Georgia Institute of Technology,
2 Emory University

Atlanta, GA

Abstract

Machine Learning (ML) research has focused on maximizing the accuracy of
predictive tasks. ML models, however, are increasingly more complex, resource
intensive, and costlier to deploy in resource-constrained environments. These issues
are exacerbated for prediction tasks with sequential classification on progressively
transitioned stages with “happens-before” relation between them.We argue that it
is possible to “unfold” a monolithic single multi-class classifier, typically trained
for all stages using all data, into a series of single-stage classifiers. Each single-
stage classifier can be cascaded gradually from cheaper to more expensive binary
classifiers that are trained using only the necessary data modalities or features
required for that stage. UnfoldML is a cost-aware and uncertainty-based dynamic
2D prediction pipeline for multi-stage classification that enables (1) navigation of
the accuracy/cost tradeoff space, (2) reducing the spatio-temporal cost of inference
by orders of magnitude, and (3) early prediction on proceeding stages. UnfoldML
achieves orders of magnitude better cost in clinical settings, while detecting multi-
stage disease development in real time. It achieves within 0.1% accuracy from
the highest-performing multi-class baseline, while saving close to 20X on spatio-
temporal cost of inference and earlier (3.5hrs) disease onset prediction. We also
show that UnfoldML generalizes to image classification, where it can predict
different level of labels (from coarse to fine) given different level of abstractions of
a image, saving close to 5X cost with as little as 0.4% accuracy reduction.

1 Introduction

Machine Learning (ML) research has mostly focused on improving prediction accuracy for classifica-
tion tasks, such as image classification (Foret et al., 2020; Xie et al., 2017), disease risk prediction
(Feng et al., 2020; Xu et al., 2018), pedestrian detection (Zhang et al., 2018; Cai et al., 2015), etc. The
understandable drive for high accuracy has often resulted in deeper, complex neural networks, which
can incur high memory (spatial cost) and high latency (temporal cost) at inference time. However,
the deployment of ML applications must be cost-aware. Run time environment like mobile devices or
bedside-patient monitors are commonly resource constrained, and applications that can be offloaded
to cloud computing always aim for a reduced cloud bill. In this paper, we focus on developing a
pipeline that can balance between high prediction accuracy and low spatio-temporal cost in deploying
ML classification models.

We consider a scenario of deploying ML classifiers in a multi-stage classification task where one
predicted class can progressively transform to a next stage of classes, characterized as “happens-
before” relationship between classes. This task is commonly observed in many real-world applications.
For instance in clinical settings, disease progression is often identified by a series of stage transitions

∗Authors contributed equally to this research.
36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Abstract Input Detailed Input

IDK

IDK

ICK1

More Input

Exit
Stage-1

C
as

ca
de

s u
pg

ra
de

 to
 c

os
tli

er
 m

od
el

s
w

he
n

la
ck

in
g

co
nf

id
en

ce
 (I
D
K
)

Confidently transition query to next stage (ICK1),
or early exit the pipeline (ICK0)

More Input

ICK1

ICK1

ICK1

ICK0 ICK1

…

Exit
Stage-2

Exit
Stage-3

ICK0

ICK0

ICK0

ICK0

ICK0

ICK0

Stage-1 Stage-2 Stage-3

IDK
IDK

(a) The 2D query propagation mechanism in UnfoldML

Dist. of predictive prob.
�̂�	(𝑌 = 1|𝑥) in true class Y=0

0 1

IDK class:
Uncertain
Cascades

upgrade to
costlier models

𝛼

ICK0 class:
Low certainty

Return
prediction

and exit early

ICK1 class:
High certainty
Prioritize and

transition to next
prediction stage

Dist. of predictive prob.
�̂�	(𝑌 = 1|𝑥) in true class Y=1

𝛽

(b) IDK and ICK classes

Figure 1: 2D uncertainty-based propagation in UnfoldML: Queries that are in confidently low risk will return
ICK0 and be monitored by cheaper models; queries that are hard to predict will return IDK and be advanced
to costlier but more confident models; queries that are in confidently high risk will return ICK1 and be transited
to next stage.
(Sperling et al., 2011; Singer et al., 2016). Detection on early stage of the disease allows doctors to take
appropriate actions in time before it enters into late severe stages. In image classifications, recognition
from super classes to sub classes in a coarse-to-fine manner has shown improved classification
performance (Dutt et al., 2017; Lei et al., 2017). In all these applications, general multi-class
classifiers (Liu et al., 2019; Fagerström et al., 2019; Foret et al., 2020) have been developed by
treating all the stages as multi classes and achieved state-of-the-art prediction performance, but at
significantly high spatio-temporal cost. Prior work (Wang et al., 2017) trades off accuracy for low
cost but still ignores the key relationship between the classes, so it fails to find the optimal trade-off.

We propose UnfoldML2 : a cost-aware and uncertainty-based prediction pipeline for dynamic multi-
stage classification. It “unfolds” a monolithic multi-class classifier into a series of single-stage
classifiers, reducing its deployment cost. Each single-stage classifier is then cascaded gradually from
cheaper to more expensive binary classifiers, further reducing the cost by dynamically selecting
an appropriate classifier for an input query. Figure 1 summarizes the two dimensional (2D) query
propagation mechanism designed in UnfoldML: Horizontally it allows a query to transition through
multiple stages, and vertically it allows the query to progressively upgrade to costlier models
constrained by the pre-specified budget limit. It computes a classifier’s prediction confidence
on a query then directs the query through one the following three gates: 1) “I confidently know
NO” (ICK0), which rejects the current query and early exits from the pipeline (exit); 2) “I don’t
know” (IDK), which upgrades the query to a higher accuracy but costlier model, producing a more
confident result within the budget (vertical cascading); and 3) “I confidently know YES” (ICK1),
which transitions the query to the next stage of the prediction task (horizontal forwarding). The design
of ICK0 gate allows queries to early exit from the UnfoldML so it reduces the overall spatio-temporal
cost of the pipeline. The ICK1 gate allows queries to faster transition to next stages so it enables early
prediction on late stages, which can be critical in clinical settings (Reyna et al., 2019). Overall, the
combined 2D propagation mechanism uniquely enables the navigation of the cost/accuracy tradeoff
space for searching an optimal set of policies for dynamic model selection at inference time.

We also propose two training algorithms for learning the optimal policies for the designed 2D
query propagation in UnfoldML. The key idea of the training algorithms is to learn the optimal
thresholds on the gating functions defined for ICK0, IDK and ICK1. The first proposed hard-
gating algorithm assumes the gating functions to be step functions parameterized by deterministic
confidence thresholds. To find the optimal thresholds, it performs bottom-up grid search over a
topologically-sorted list of all the models and identifies the thresholds to minimize the prediction loss,
while following a cost constraint. The secondly proposed soft-gating algorithm defines the gating
functions to be probabilistic activation functions. It follows a Mixture-of-Expert (MoE) framework
to adaptively determine a models’ confidence threshold given all the other model’s confidence in
predicting the same query. To obviate the cost of running all models in MoE selection, we further
propose a Dirichlet Knowledge Distillation (DKD) to run only a cheap multi-label classifier that is
trained for distilling the Bayesian predictive uncertainties of all models.

We summarize the contributions of this paper as follows:

2Code is available at https://github.com/gatech-sysml/unfoldml.

2

https://github.com/gatech-sysml/unfoldml

• We design a novel 2D query propagation pipeline that “unfolds” multi-stage prediction
workflows by leveraging the “happens-before” relationship between the stages, and achieves
a lower-cost prediction pipeline with minimal accuracy degradation.

• We propose two learning algorithms to sufficiently navigate the cost/accuracy tradeoff space
and search an optimal set of policies for the designed 2D query propagation.

• We apply the proposed pipeline to two real-world applications and demonstrate it reduces
the spatio-temporal cost of inference by orders of magnitude.

2 Related Work

The most relevant work to our proposed method is the one-step IDK cascade (Wang et al., 2017),
which incorporates prior work of “I don’t know” (IDK) classes (Trappenberg and Back, 2000; Khani
et al., 2016) into cascade construction and introduce a latency-aware objective into the construction
comparing with previous cascaded prediction frameworks (Rowley et al., 1998; Viola and Jones,
2004; Angelova et al., 2015). Another group of work focus on the problem of feature selection
assuming each feature can be acquired for a cost. They train a cascade of classifiers for optimizing
the trade-off between the expected classification error and the feature cost. Early solution (Raykar
et al., 2010) limits the cascade to a family of linear discriminating functions. Cai et al. (2015) applies
boosting method for cascading a set of weak learners. Recent methods (Trapeznikov and Saligrama,
2013; Clertant et al., 2019; Janisch et al., 2019) develop POMDP-based frameworks and incorporate
deep Q-learning in training the cascades. In contrast to all of the above work that are only 1-D
pipelines for one-step prediction task (can be multi-class classifications), our method extends to a 2D
pipeline that can dynamically forward examples to next steps after they are confidently predicted as
passed on the current step. Further, we also develop a more efficient pipeline framework based on
Mixture-of-Experts (MoE) modeling and knowledge distillation, which can apply gradient decent
algorithms for learning the parameters efficiently.

The idea of MoE was originally introduced by Jacobs et al. (1991), for partitioning the training
data and feeding them into separate neural networks during the learning process. This gate decision
design is applied into many domains such as language modeling (Ma et al., 2018), video captioning
(Wang et al., 2019), multi-tasking learning (Ma et al., 2018). It is also used in network architecture
searching (Eigen et al., 2013) by setting gate activation on network layers. Sparse gates are introduced
in MoE so that it can efficiently select from thousands of sub-networks (Shazeer et al., 2017) as
well as increases the representation power of large convolutional networks by only using a shallow
embedding network to produce the mixture weights (Wang et al., 2020). We incorporate the idea
of sparsely gated MoE (Shazeer et al., 2017; Wang et al., 2020) into our prediction framework, and
design a soft-gating training algorithm by using ReLU as the sparse gating function and imposing
L1-norm regularization on the gating weights for further sparsity.

Confidence criterion has been incorporated into active learning by Li and Sethi (2006) and then
extended by Zhu et al. (2010). Lei (2014) proposed confidence based classifiers that identifies the
confident region (like ICK class) and uncertain region (like IDK class) in predictions. Confidence
are also introduced into word embedding (Vilnis and McCallum, 2015; Athiwaratkun and Wilson,
2018) and graph representations (Orbach and Crammer, 2012; Vashishth et al., 2019). Our method
posits thresholds on prediction confidence for activating the gates in pipeline expansion. Bayesian
Prior Networks (BPNs) (Malinin and Gales, 2018) have been proposed to estimate the uncertainty
distribution in model predictions, which is more computationally efficient than traditional Bayesian
approaches (MacKay, 1992; Mackay, 1992; Hinton and Van Camp, 1993). We propose Dirichlet
Knowledge Distillation (DKD) based on BPNs for distilling prediction uncertainty in large models so
that we only need to run a low-cost multi-head model for producing the weights in MoE efficiently.

3 Multi-Stage Dynamic Prediction Pipeline

We introduce a dynamic 2D prediction pipeline UnfoldML, which learns the optimal policy for
making “I confidently know” (ICK) predictions on sequential multi-stage classification tasks. An
optimal policy will effectively trade off prediction accuracy against spatio-temporal costs in order to
maximize the overall system accuracy’s AUC while staying under user-imposed cost constraints.

3

3.1 Problem Formulation

Given x ∈ X at time t, a multi-stage pipeline decides whether the individual should maintain at
the current stage s or progress into the next stage s + 1 for time t + 1. If there are a total number
of S stages that need to be detected, we train K number of models m for each specific stage s to
form a model zooM = {{m11, · · · ,m1K1

}, · · · , {mS1, ...,mSKS
}}. We measure each model’s

spatio-temporal cost by multiplying the device cost per unit time with the serving time per prediction
stage, denoted as cost(msk).

To optimize the limited system resources, we design a 2D UnfoldML in the following way: (1) start
with the simplest model for prediction of the initial stage on incoming data, and (2) upgrade vertically
to costlier models on those samples where “I don’t know” (IDK), or (3) transition horizontally to
the next stage of the pipeline samples where “I confidently know YES” (ICK1) that we have correctly
identified the sample at the current stage, otherwise (4) exit the pipeline for those “I confidently know
NO” (ICK0) samples that have been identified and discarded. Figure 1 (a) demonstrates the proposed
2D architecture of UnfoldML. The central problem of UnfoldML is learning the optimal policy for
each of the three classes of gating functions with the objective of maximizing high system-wide
accuracy while minimizing the prediction cost.

We formulate UnfoldML as a decision rule mapping function mcasc : X ×M→M, which takes
example xt coming at time t and the current model choice msk as an input to determine whether
the model for the query should take one of the aforementioned three actions: upgrade vertically,
transition horizontally, or exit the pipeline. These decisions rules can be realized by two groups
of parameters: a confidence criterion q : X ×M→ [0, 1] that measures the confidence score of a
model’s prediction on a data example, and two gate functions GIDK , GICK1 : [0, 1]× {True,False}
that are applied on to the confidence score per each prediction made by modelmsk. The two exclusive
gates IDK and ICK1 each respectively decides if the current prediction belongs to either an IDK
class such that (s.t.) the system will upgrade the query to a costlier model while remaining within
the user-defined cost budget, or an ICK1 class s.t. the system will transition the query to the next
stage in the pipeline. The third gate GICK0 is determined by ¬GIDK ∧ ¬GICK1 . We formalize the
decision rule used at each prediction stage as follows

mcasc(xt,msk; q,G) =

ms(k+1), G

IDK ∧ ¬GICK1
(
qsk(xt)

)
,

m(s+1)1,¬GIDK ∧GICK1
(
qsk(xt)

)
,

msk, ¬GIDK ∧ ¬GICK1
(
qsk(xt)

)
where qsk(xt) is a short notation for q(xt,msk) measuring the confidence of model msk’s prediction
on data xt. The goal of configuring an optimal pipeline given a restricted computation resource can
be formalized as the following optimization problem:

min
G
L
(
mcasc;D) s.t. cost(mcasc;D) ≤ c, (1)

where G consists of the two gate functions GIDK and GICK1 , L denotes the end-to-end prediction
loss on data D and c is a user-specified cost-constraint for the system.

3.2 Gate Parameters Learning

Given a training data setD, which does not include any data that was used in the training of the models
in our model zoo: D = {

(
xi, (y

1
i , t

1
i), · · · , (ySi , tSi)

)
}Ni=1, where xi = (xi1, · · · ,xiTi) is an input

sequence observed for individual i, ysi ∈ {0, 1} indicates whether the example entered to stage-s,
and if yes, we use tsi ∈ ∅ ∪ [1, Ti] to determine when it entered. We first partition the multi-stage data
into S one-stage data sets: Ds = {(xi[ts−1

i :tsi]
, ysi == 1)} ∪ {(xi[ts−1

i :Ti]
, ysi == 0)}, then divide

the learning of IDK and ICK gate parameters into two separable sub-problems:

Sub-Objective 1: min
GIDK

s

Ls
(
mcasc

s ;Ds
)

s.t. cost(mcasc
s ;Ds) ≤ cs, s = 1, · · · , S (2)

Sub-Objective 2: min
GICK1

L
(
mcasc;D, GIDK∗),

where Ls is the one-stage prediction loss on data Ds, and cs is the cost budget that is pre-allocated
for stage-s satisfying

∑
s cs = c.

4

Decomposing the end-to-end optimization problem in Eq. (1) into two sub-problems in Eq. (2)
allows us to parallelize the training process. We can efficiently learn each stage’s optimal IDK gate
parameters by solving Sub-Objective 1, and learn the optimal ICK1 gate parameters by fixing the
learnt IDK values in Sub-Objective 2.

3.2.1 Hard-gating Training Algorithm

In this algorithm, we assume GIDK to be a hard-gating function that is parameterized by cutoff αsk

s.t. the gate is only activated if the level of confidence in the prediction is below a threshold.

Hard-gating: GIDK(qsk(xt)) = I(qsk(xt) < αsk), (3)

where I(·) is an indicator function. Based on the Problem Formulation, a model msk at stage s can
only be activated if I(qsk(xt) ≥ αsk) ∧k−1

j=1 I(qsj(xt) < αsj) ≡ 1. Now we write the conditional
probability of being at stage-s given input xt as

Pr(ys = 1|xt;m
casc
s) =

∑Ks

k=1 I(qsk(xt) ≥ αsk) ·
∏k−1

j=1 I(qsj(xt) < αsj) ·msk(xt),

where msk(xt) = Pr
(
ys = 1 | xt;msk

)
. The one-stage loss function in Hard-Gating is defined as

the negative log-likelihood loss

Ls
nll

(
mcasc

s ;Ds
)
= −

∑Ns

i=1

∑Ti

t=1 y
s
it · log psit + (1− ysit) · log(1− psit),

where psit = Pr(ys = 1|xit;m
casc
s), ysit = 1 only if ysi = 1 and t ∈ [t1i −δt, t1i] for some δt time-steps

we wish to early detect the next stage s+ 1.

Algorithm 1 in Appendix 5.1 describes a bottom-up grid search algorithm for for learning hard-gating
parameters. We sort the model listMs = {ms1, · · ·msKs

} in a monotonically increasing order
w.r.t AUC and cost which discards any sub-optimal models. For any stage s, Algorithm 1 starts by
assigning all the Ns samples for that stage to the first model ms1, and performing a grid search on
the gate parameters αsk’s for level k = 1 to Ks. It gradually assigns IDK samples to the next level’s
model in the list until the cost exceeds the user-defined budget cs for that stage. In each iteration of
searching the cutoff αsk, we set an upper bound maxA on the maximum searching value to avoid
over-upgrading. Without setting this bound, the algorithm could overfit and put all the samples into
the IDK class, then assign them to the next level’s model. This consumes the cost quota quickly,
and prevents high IDK samples from exploring larger models in the list.

3.2.2 Soft-gating Training Algorithm

In contrast to grid search on the thresholds, we propose a soft-gating algorithm formulating an
objective function that can be efficiently solved using gradient descent algorithms. In this algorithm,
we define the gate function GIDK to be a ReLU function parameterized by a pair of coefficients
(ask, bsk) s.t. the gate is only activated if the linear product ask · qsk(xt)− bsk > 0. Formally we
define Soft-gating as

Soft-gating: GIDK(qsk(xt)) = ReLU(ask · qsk(xt)− bsk). (4)

Therefore the conditional probability of being at the stage-s given input xt is defined as a mixture of
the Ks models available for stage-s prediction:

Pr(ys = 1|xt;mcasc) =
∑Ks

k=1G
IDK(qsk(xt)) ·msk(xt)/

∑Ks

j=1G
IDK(qsj(xt)).

Now, the negative log-likelihood loss Ls
nll becomes solvable using gradient descent algorithms.

However, the normalization term in the mixture of experts requires running all the candidates models
in the zoo, which conflicts with our cost-saving goal. Therefore, we propose using a Dirichlet
Knowledge Distillation (DKD) for training a small surrogate model for each stage to quantify the
prediction confidence for each model in the zoo. Then we replace the qsj(xt)’s with their estimations
q̂sj(xt)’s when selecting the expert models to infer with when real predictions are made. The smaller
distilled model only needs to be run once per query, requiring much less cost than running all the
models. In our experiment, we utilize the first model ms1 from each stage, take the embedding of
hs1(xt) prior to the last activation layers in ms1 and feed it into a 4-layer Ks-head Multi-Layer
Perceptron (MLP) that is the distilled model.

5

The idea of DKD is to posit a Dirichlet prior distribution over the parameters π characterizing the
predicted output categorical distribution (i.e., binomial in our setup) and a surrogate prior network f
is fit to generate the concentration parameters αsk in the prior:

Pr(π|xt;msk) = Dir(π|αsk); αsk = (αsk,0, αsk,1) = f(xt;msk).
If the learnt concentration parameters yield a flat prior distribution, it means high uncertainty in the
model prediction; if they yield a sharp prior distribution, it means low uncertainty. Then an estimation
q̂sk(xt) can be computed from the expected predictive probability p̂sk(xt) = Eπ∼Dir(π|αsk)[π1] =
αsk,1/(αsk,0 + αsk,1). For training the DKD model, which is a Ks-head MLP per each stage in this
paper, we define the loss function for head k as a Kullback-Leibler (KL) divergence between the
prior distribution and empirical observed distribution:

L(αsk) =
∑Ns

i=1

∑Ti

t=1 KL
(
Dir(π|αsk) || psk(xit)

)
,

where psk(xit) are the real predicted probabilities produced from model msk on input xit. Addition-
ally, we also add the cross-entropy loss as an auxiliary loss when training the DKD. Once the distilled
model is trained, we replace the qsj(xt)’s with the estimated values from the model. Then for cost
constraining, we ensure the selected models do not exceed user-imposed cost constraint by enforcing
sparse gating weights over the model choices. Therefore, we reformulate the objective function in
Hard-Gating Sub-Objective 1 as the following Lagrangian function

min
GIDK

Ls
nll(m

casc;Ds) + λLs
cost + µLs

sparse,

where the second term Ls
cost takes the cost constraint, controlled by λ > 0 and the third term

Ls
sparse imposes further sparse regularization on the gating weights w.r.t their L1 norms, controlled

by µ > 0. Formally, we write the last two terms as Ls
cost =

(
max(0, cost(mcasc

s) − cs)
)2

and
Ls

sparse =
∑

i,t ∥GIDK(q̂sk(xit))∥1. Now we use stochastic gradient descent algorithms to learn
the optimal as and bs minimizing the above loss. Algorithm 2 in Appendix 5.1 summarizes the
soft-gating training algorithm.

3.2.3 Overall Training Algorithm

To complete the overall training algorithm, we need to learn the optimal gate parameter GICK1 in
Sub-Objective 2. Given the model msk picked by one-stage IDK cascade (either using hard-gating
or soft-gating algorithms) for a data example xt at stage s, we grid search for the optimal thresholds
θsk’s on the predictive probabilities s.t. the type I error on class ICK1 and type II error on ICK0

are both minimized. Several existing methods (Liu, 2012; Perkins and Schisterman, 2006; Unal,
2017; Miller and Siegmund, 1982) have been proposed for minimizing both type I error and type
II error in various ways, we pick the Closet-to-(0,1) (Perkins and Schisterman, 2006) method that
finds the optimal threshold achieving the most left upper corner in the ROC curve. Finally, Algorithm
3 in Appendix 5.1 gives the end-to-end training Algorithm for UnfoldML, where we can use either
Algorithm 1 or 2 to learn the optimal gating policy.

4 Experiments

We evaluate UnfoldML on two real-world tasks. The first task is to predict if and when a patient who
was newly admitted into the Intensive Care Unit (ICU) of a hospital will develop sepsis (Stage-1),
which can then progress into septic shock (Stage-2). The second task is detection of the subcategory-
of-interest in a label hierarchy that filters out queries that are not of interest in Stage-1 and then refines
the predictions into fine classes in Stage-2.

4.1 Task 1: Sepsis-Septic Shock prediction

We use MIMIC-III Critical Care Database (Johnson et al., 2016). The database consists of deidentified
health records from over 50, 000 critically ill patients who stayed in the ICUs of the Beth Israel
Deaconess Medical Center between 2001 and 2012. We detail our data preparation in Appendix 5.2
The final cohort includes a total of 34, 475 ICU patients, from which 2, 370 (6.8%) presented with
Sepsis, from which a total of 229 (9.7%) progressed into Septic Shock. We randomly split our cohort
of patient data into a training set (70%), validation set (20%) and test set (10%). First, we use the
training set to train a set of models to formulate a model zoo. Next, we use the validation set to train
the UnfoldML policy. Finally, we use the test set to evaluate performance.

6

4.1.1 Experimental Setup

Model Zoo. We construct our model zoo by training two sets of binary classifiers for Stage-1 (Sepsis)
and for Stage-2 (Septic Shock) using a variety of architectures and features. We select CPU-based
models such as Logistic Regression, Decision Tree and Random Forest, and GPU-based models such
as LSTM (Long Short-Term Memory) that is thus far the state-of-art approach in the early detection
of Sepsis and Septic Shock (Fagerström et al., 2019; Liu et al., 2019). For LSTM, we vary the hidden
size ranging from 100 to 400, the number of layers from 1 to 4. We also vary the window of patient
data we input over 1, 6, and 12 hours. For each stage and model architecture we train models with
different combinations of feature sets based on the collection modality. All models start with with
basic demographic features and vital signs, and are then extended with additional features including
results from lab tests, beside monitoring, and medication/IV treatments.

Confidence Measures We consider four choices for measuring the confidence q of a model prediction.
Given p, the model’s predictive probability of output Y being 1, we define

• Max probability: max
(
1− p, p

)
,

• Entropy:
(
p · log p+ (1− p) · log(1− p)

)
,

• Entropy of expected: − α0

α0+α1
·
(
ψ(α0)− ψ(α1)

)
+ ψ(α0 + α1),

• Mutual Information: Entropy − Entropy of expected,

Spatio-Temporal Cost. Given the trained model zoo, we profile spatio-temporal costs for each of the
models. The spatio-temporal cost is the total time spent in each hardware due to inference/forward-
pass calls of the models (temporal cost) multiplied with the hardware’s cost per unit time (spatial
cost). This cost serves as a proxy for the real dollar cost as it is the basis for pricing models in cloud
offerings such as AWS On-Demand, Lambda, or Spot.

Baseline. To our knowledge, UnfoldML is the first system to provide 2-dimensional cascading
predictions. A reasonable baseline for our method are models that frame the multi-stage sequential
task as a multi-class classification task by ignoring the happen-before relationship between the
stages. The baseline’s goal is to classifying patients into one of the three classes: Non-Septic, Septic,
and Septic Shock. We use a state-of-the-art LSTM which is widely used in prediction of clinical
time-series. We evaluate performance LSTM’s across a variety of spatio-temporal costs by changing
the number of layers and hidden sizes in the architecture.

• Multi-class LSTM: One unified multi-class model works end to end for predicting the multi classes.
Prior work (Wang et al., 2017) implements a 1-D prediction cascade on IDK classes. It uses a similar
hard-gating algorithm to learn hard thresholds on prediction entropy for making decisions if the
system should cascade to costlier models. So we reduce UnfoldML to a 1-D pipeline by removing its
horizontal ICK transition and compare the soft-gating algorithm with this baseline. We evaluate them
on the two single-stage classification tasks on sepsis and septic shock predictions respectively.

• Single-Stage binary classifiers: CPU-based models such as Logistic Regression, Decision Tree,
Random Forest and TREWScore (Henry et al., 2015), a cox proportional hazards model that is
well-known in early detection of septic shock; GPU-based models such as LSTMs.

• IDK-cascade (Wang et al., 2017): Prior work of 1-D prediction cascade on IDK classes using a
hard-gating like algorithm.

4.1.2 Evaluation and Results

End-to-End Classification Performance. To evaluate the prediction performance on our multi-stage
task, we treat UnfoldML as a multi-class classifier which predicts one of the same three classes as
defined in Baseline. UnfoldML generates predictions at time-step for every patient, we take the
maximum of the predictive probabilities along the prediction horizon for each patient and normalize
them with a sum of 1. We compute the multi-class ROC AUC scores by averaging the pairwise ROC
AUCs (known as one-vs-one) of each classes.

Better Cost-AUC tradeoff. We evaluate the model performance in trading off between the end-to-end
AUC and spatio-temporal cost as follows: we vary the user-defined cost constraint c in Eq. 1, and
train UnfoldML repeatedly while searching the trade off in a 2D space. Each run contributes a point
in the scatter plot of Figure 2b. We compute the convex hull of the searched points in the set and

7

Spatio-Temporal Cost

En
d-

to
-E

nd
 A

U
C

7 20 55 148 403

UnfoldML-H (hard-gating)

UnfoldML-S (soft-gating)

Multi-class LSTM

(a) Convex hull comparison for the set of points
searched by different methods in the End-to-End
AUC vs. Spatio-Temporal Cost tradeoff space.

7 20 55 148
Spatio-Temporal Cost

En
d-

to
-E

nd
 A

U
C

UnfoldML-S (Rec.)

Multi-Class LSTM (Rec.)

Multi-Class LSTM-A

Multi-Class LSTM-C

UnfoldML-S (Soft-Gating) Searching
Multi-class LSTM Searching

(b) Search the trade off between End-to-End AUC
and Spatio-Temporal cost by varying the cost con-
straint (x-axis is in a logarithmic scale).

Figure 2: Tradeoff space of the End-to-End AUC vs. Spatio-Temporal Cost.

UnfoldML-H UnfoldML-S Multi-class LSTM

Approx. area of the convex hull 17.58 31.17 24.20
Table 1: The approximated area of the convex hull searched by different methods in Figure 2a.

demonstrate the resulting area of the hull in Figure 2a. We train our baseline method repeatedly by
varying the LSTM architecture and plot in the same way as in Figure 2a. In comparison, UnfoldML-S
(soft-gating) searches significantly higher AUC regions than the multi-class LSTM baseline and
performs more consistently than the hard-gating algorithm. To quantify the trade-off evaluation in
Figure 2a, we calculate the area of the convex hull searched by each method (Table 1).

UnfoldML-S presents the highest score comparing to the baseline with UnfoldML-H. In addition,
we pick several critical points from the searched convex hull in Figure 2b and present them in
Table 2. The recommended configuration for systems that effectively trade off spatio-temporal
cost and end-to-end AUC is to select models along the frontier line drawn through the points that
form the top-left corner of the hull. As shown in Table 2, an optimal configuration for our pipeline
UnfoldML-S (Rec.) can achieve comparable end-to-end AUC score (88.9%) with the most accurate
baseline Multi-Class LSTM-A (88.8%), while operating at a 19.6X spatio-temporal cost reduction.
In comparison with UnfoldML-A, which naively uses the most accurate single-stage models in each
stage, UnfoldML-S outperforms the end-to-end AUC while providing a 22.7X reduction in spatio-
temporal cost. Alternatively, UnfoldML-S (Rec.) outperforms Multi-class LSTM (Rec.) at an AUC
gain of 5.3% with only 1.3X more cost. The improvement in end-to-end AUC scores from UnfoldML
is a result of the dynamic nature of inference pipeline, which selects the optimal pathway for each
patient. The savings in spatio-temporal cost can be attributed to the usage of low cost models when
they are confident enough, in contrast, baselines (UnfoldML-A, Multi-Class LSTM-A) always use
the most accurate model.

Single-Stage Performance. We report single-stage performance on Sepsis and Septic Shock pre-
dictions in Table 3. For both predictions, UnfoldML achieves a significant reduction in costs with
only a marginal loss of AUC compared to the highest accuracy baseline LSTM-A — 32.3x lower
spatio-temporal cost with 1.7% lower AUC for Sepsis prediction and 26.8x lower costs with 0.7%
lower AUC for Septic Shock prediction. The baseline IDK-Cascade can achieve comparable AUC as
UnfoldML-S, but requires 3.4x higher costs.

Better Early-hour Prediction. Table 2 also reports the average early prediction, showing UnfoldML-
S predicts septic shock earlier than all other methods. It predicts 2.1 hrs prior to the strongest baseline
Mutli-class LSTM-A. It benefits from the multi-stage cascaded prediction in UnfoldML such that
the system can exit early from the sepsis stage once it is in the ICK1 class and proceed to shock
prediction before sepsis is truly diagnosed.

4.2 Task 2: Subcategory Classification

To demonstrate the generalizability of UnfoldML we conduct experiments on a computer vision task
where we wish to detect a subcategory-of-interest. In the subcategory-of-interest task, we wish to

8

Sepsis-Septic Shock Prediction
end-to-end Spatio-Temporal Cost Per Early Prediction on
AUC (%) Inference Call ($) Septic Shock (hr)

Multi-class LSTM-C 75.1 5.1 12.6
Multi-class LSTM-A 88.9 269.0 24.0
Multi-class LSTM (Rec.) 83.5 6.0 15.4

UnfoldML-C 76.9 5.8 22.9
UnfoldML-A 87.2 311.8 16.4
UnfoldML-H (Rec.) 84.4 34.2 14.2
UnfoldML-S (Rec.) 88.8 13.7 26.1

Table 2: End-to-end performance comparison on two-stage prediction (‘-C’ denotes the model choice of the
cheapest and least accurate; ‘-A’ denotes the model choice of the costliest and most accurate; ‘-Rec.’ denotes
the recommended model choice with a good trade-off between cost and accuracy in Figure 2b; ‘-S’ denotes
soft-gating; ‘-H’ denotes hard-gating.

Sepsis Prediction Septic Shock Prediction
Single-Stage Spatio-Temporal Cost Single-Stage Spatio-Temporal Cost

AUC (%) Per Inference Call ($) AUC (%) Per Inference Call ($)
TREWScore (Henry et al., 2015) - - 83.0 2.3
Logistic Regression 74.5 2.3 87.0 2.3
Decision Tree 70.4 2.4 83.1 2.4
Random Forest 75.7 148 85.2 148

LSTM-C 88.6 5.1 90.3 5.1
LSTM-A 92.8 268 96.9 268

IDK-Cascade (Wang et al., 2017) 91.7 28.1 95.2 34.0
UnfoldML-S 91.1 8.3 96.2 10.0

Table 3: Single-stage performance

accurately predict if an image falls within a specific subcategory of a dataset with classes that form a
hierarchical structure, while still ensuring our spatio-temporal costs remain within the user-defined
budget. In this task, each query is an image from which UnfoldML is asked to predict if the image
belongs to a subcategory in the label hierarchy we are interested in. For our experiment using the
CIFAR-100 dataset (Krizhevsky et al., 2009), we define two separate subcategory-of-interest tasks
based on the real-world system applications of computer vision systems. We want to identify images
of a specific subcategory from one of two chosen categories: ‘people’ (baby, boy, girl, man, woman)
and ‘vehicles’ (bicycle, bus, motorcycle, pickup truck, train). CIFAR-100 consists of 60,000 32x32
colour images in total of 100 ‘fine’ classes. There are 500 training images and 100 testing images per
class. In addition, each image also is assigned a ‘coarse’ label indicating which category (such as
people, vehicles, trees, etc) it belongs to. In our experiment, we do a multi-class classification on the
’coarse-granularity’ labels in Stage-1 to detect the category, then we do multi-class classification on the
original ‘fine-granularity’ CIFAR-100 labels in the second step to identify the subcategory-of-interest.

4.2.1 Experimental Setup

Our model zoo is made of WideResNets (WRN) using Sharpness-Aware Minimization (Foret et al.,
2020) which is cited as having state-of-the-art performance on the CIFAR-100 image recognition task.
For each stage we train models with widths from [2, 4, 6, 8, 10] and depths from [16, 22, 24, 28]. For
Stage-1 we train K1 number of multi-class classification models using the full dataset of CIFAR-100
with coarse-granularity labels as our target subcategories, resulting in a total of 20 classes. We train
models for Stage-1 using the full 32x32 image and as well as random crops of size 24x24 or 16x16.
For Stage-2 we train K2 multi-class models to identify the next subcategory that happens-after the
coarse subcategory from Stage-1. We train our Stage-2 models only using data with the coarse-
granularity label for our subcategory in Stage-1. We train Stage-2 models using the full 32x32 image
or random crop of 24x24. We profile each model by computing the number of Multiply-Accumulate
Operations (MACs) and use it as proxy measure of our spatio-temporal cost.

4.2.2 Evaluation and Results

We compare UnfoldML against a multi-class WRN classifier baseline which directly predicts labels
at the fine-granularity. We train the baseline with a width factor of 10 and a depth of 28 using the
full-sized 32x32 image. We evaluate both accuracy and MACs, and report the results in Table 4. The
results show that UnfoldML is able to find the optimal gating policy for the pipeline and achieve

9

Subcategory ‘People’ Subcategory ‘Vehicles’
Accuracy (%) Macs (10M) Accuracy (%) Macs (10M)

WRN-A 98.1 525.0 99.3 667.0
UnfoldML-S 97.1 77.0 98.9 142.3

Table 4: Performance on subcategory classification

a spatio-temporal cost-savings of 6.9X with 1% reduction in accuracy for ‘people’ subcategory
classification; we achieve a cost-savings of 4.7X with 0.4% reduction in accuracy for ‘vehicle’
subcategory-of-interest identification. Thus, UnfoldML achieves a savings in spatio-temporal cost
in for this task without compromising the overall accuracy. UnfoldML can accomplish this because
when it is confident that queries do not belong to our subcategory-of-interest (ICK0), we are able
to early exit the query from the prediction pipeline. When UnfoldML is not confident (IDK), it
upgrades queries to costlier and more accurate models. Only when UnfoldML can confidently
predict the subcategory (ICK1) in Stage-1 will it transition the query to Stage-2 and make the final
prediction. This results in a significant cost-savings without compromising accuracy.

A recent alternative method for trading-off accuracy and cost in image classification is CwCF
(Classification with Costly Features) (Janisch et al., 2019), which traverses the trade-off space by
varying a cost parameter that limits the number of selected features and uses Deep Q-Learning (DQL)
model to train a feature-cost-aware classifier. In addition, it also includes a pre-trained cost-unaware
High-Performance Classifier (HPC), which is called when it decides to include all the features. In
order to establish a fair baseline against UnfoldML, we used the most accurate multi-class WRN for
the HPC in CwCF. We vary their cost parameter lambda for searching the optimal trade-off point
in the accuracy-cost space, however, it only returns two extreme data points that gives either low
accuracy of 1% with only < 10 features or high accuracy as the WRN-A shows in Table 4 with all
the features. We observe similar failure in traversing the trade-off space for CIFAR-10 in Figure 4(c)
of their paper, so we do not include this as a baseline for this task.

5 Conclusion

ML models, including for healthcare applications, are growing exponentially in size and cost of
inference. This is problematic for resource constrained hospital environments. Costlier, monolithic
models require expensive hardware, and can not fit on bed-side compute or even on site compute
clusters with clinical implications. UnfoldML proposes a set of mechanisms and policies to address the
growing cost of monolithic classifiers for healthcare applications. It implements a query propagation
mechanism that “unfolds” a monolithic multi-class classifier into a sequence of single-class classifiers,
each with its own cascade progressively more complex models. Each query is allowed to (1)
confidently exit the pipeline with an ICK0, (2) transition horizontally to the next stage in the pipeline
with an ICK1, or (3) upgrade vertically to a more complex model within the horizontal stage with an
IDK. This mechanism is coupled with a set of policies, such as soft-gating, that set the thresholds
at which the state transitions occur for queries to the system. UnfoldML builds on a fundamental
insight that classes may have a “happens before” relationship between them, which can be leveraged
to “unfold” a classifier, leading to savings in spatio-temporal cost (how much resource used for how
long) and clinically significant earlier onset prediction. UnfoldML improves the frontier of optimality
in the cost/accuracy tradeoff space and is able to nearly match (within 0.1%) SoTA AUC performance
for septic shock prediction at the 1

20

th of the baseline cost. UnfoldML and the application of the
“happens before” insight generalizes to computer vision tasks with 5x cost savings gained for a mere
0.4% drop in accuracy. Limitations of this work include demonstrations on more than 2 stages tasks.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Numbers
NSF IIS-2106961, CAREER IIS-2144338, and CCF-2029004. We would also like to acknowledge Dr.
Kevin Maher and Dr. Alaa Aljiffry of Children’s Healthcare of Atlanta for their medical insights and
clinical guidance as well as the Neurips’22 Area Chairs and reviewers for their insightful feedback,
which contributed to the improved quality of this paper. Disclaimer: Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

10

References
Anelia Angelova, Alex Krizhevsky, Vincent Vanhoucke, Abhijit Ogale, and Dave Ferguson. 2015.

Real-time pedestrian detection with deep network cascades. (2015).

Ben Athiwaratkun and Andrew Gordon Wilson. 2018. On Modeling Hierarchical Data via
Probabilistic Order Embeddings. In International Conference on Learning Representations.
https://openreview.net/forum?id=HJCXZQbAZ

Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. 2015. Learning complexity-aware
cascades for deep pedestrian detection. In Proceedings of the IEEE International Conference on
Computer Vision. 3361–3369.

Matthieu Clertant, Nataliya Sokolovska, Yann Chevaleyre, and Blaise Hanczar. 2019. Interpretable
cascade classifiers with abstention. In The 22nd International Conference on Artificial Intelligence
and Statistics. PMLR, 2312–2320.

Anuvabh Dutt, Denis Pellerin, and Georges Quénot. 2017. Improving image classification using
coarse and fine labels. In Proceedings of the 2017 ACM on International Conference on Multimedia
Retrieval. 438–442.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. 2013. Learning factored representations in
a deep mixture of experts. arXiv preprint arXiv:1312.4314 (2013).

Josef Fagerström, Magnus Bång, Daniel Wilhelms, and Michelle S Chew. 2019. LiSep LSTM: a
machine learning algorithm for early detection of septic shock. Scientific reports 9, 1 (2019), 1–8.

Chen Feng, Paul Griffin, Shravan Kethireddy, and Yajun Mei. 2020. A boosting inspired personalized
threshold method for sepsis screening. Journal of Applied Statistics (2020), 1–22.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. 2020. Sharpness-aware
minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020).

Katharine E Henry, David N Hager, Peter J Pronovost, and Suchi Saria. 2015. A targeted real-time
early warning score (TREWScore) for septic shock. Science translational medicine 7, 299 (2015),
299ra122–299ra122.

Geoffrey E Hinton and Drew Van Camp. 1993. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory. 5–13.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991. Adaptive
mixtures of local experts. Neural computation 3, 1 (1991), 79–87.

Jaromír Janisch, Tomáš Pevnỳ, and Viliam Lisỳ. 2019. Classification with costly features using deep
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
3959–3966.

Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. 2016.
MIMIC-III, a freely accessible critical care database. Scientific data 3 (2016), 160035.

Fereshte Khani, Martin Rinard, and Percy Liang. 2016. Unanimous Prediction for 100% Precision
with Application to Learning Semantic Mappings. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, 952–962. https://doi.org/10.18653/v1/P16-1090

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images.
(2009).

Jing Lei. 2014. Classification with confidence. Biometrika 101, 4 (2014), 755–769.

Jie Lei, Zhenyu Guo, and Yang Wang. 2017. Weakly supervised image classification with coarse and
fine labels. In 2017 14th Conference on Computer and Robot Vision (CRV). IEEE, 240–247.

11

https://openreview.net/forum?id=HJCXZQbAZ
https://doi.org/10.18653/v1/P16-1090

Mingkun Li and Ishwar K Sethi. 2006. Confidence-based classifier design. Pattern Recognition 39, 7
(2006), 1230–1240.

Ran Liu, Joseph L Greenstein, Stephen J Granite, James C Fackler, Melania M Bembea, Sridevi V
Sarma, and Raimond L Winslow. 2019. Data-driven discovery of a novel sepsis pre-shock state
predicts impending septic shock in the ICU. Scientific reports 9, 1 (2019), 1–9.

Xinhua Liu. 2012. Classification accuracy and cut point selection. Statistics in medicine 31, 23
(2012), 2676–2686.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. 2018. Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1930–1939.

David JC MacKay. 1992. A practical Bayesian framework for backpropagation networks. Neural
computation 4, 3 (1992), 448–472.

David John Cameron Mackay. 1992. Bayesian methods for adaptive models. Ph. D. Dissertation.
California Institute of Technology.

Andrey Malinin and Mark Gales. 2018. Predictive Uncertainty Estimation via Prior Networks. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems
(Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY, USA, 7047–7058.

Rupert Miller and David Siegmund. 1982. Maximally selected chi square statistics. Biometrics
(1982), 1011–1016.

Matan Orbach and Koby Crammer. 2012. Graph-based transduction with confidence. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
323–338.

Neil J Perkins and Enrique F Schisterman. 2006. The inconsistency of “optimal” cutpoints obtained
using two criteria based on the receiver operating characteristic curve. American journal of
epidemiology 163, 7 (2006), 670–675.

Vikas C Raykar, Balaji Krishnapuram, and Shipeng Yu. 2010. Designing efficient cascaded classifiers:
tradeoff between accuracy and cost. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining. 853–860.

Matthew A Reyna, Chris Josef, Salman Seyedi, Russell Jeter, Supreeth P Shashikumar, M Brandon
Westover, Ashish Sharma, Shamim Nemati, and Gari D Clifford. 2019. Early prediction of sepsis
from clinical data: the PhysioNet/Computing in Cardiology Challenge 2019. In 2019 Computing
in Cardiology (CinC). IEEE, Page–1.

Andrew Rhodes, Laura E Evans, Waleed Alhazzani, Mitchell M Levy, Massimo Antonelli, Ricard
Ferrer, Anand Kumar, Jonathan E Sevransky, Charles L Sprung, Mark E Nunnally, et al. 2017.
Surviving sepsis campaign: international guidelines for management of sepsis and septic shock:
2016. Intensive care medicine 43, 3 (2017), 304–377.

Henry A Rowley, Shumeet Baluja, and Takeo Kanade. 1998. Neural network-based face detection.
IEEE Transactions on pattern analysis and machine intelligence 20, 1 (1998), 23–38.

Christopher W Seymour, Vincent X Liu, Theodore J Iwashyna, Frank M Brunkhorst, Thomas D Rea,
André Scherag, Gordon Rubenfeld, Jeremy M Kahn, Manu Shankar-Hari, Mervyn Singer, et al.
2016. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions
for Sepsis and Septic Shock (Sepsis-3). Jama 315, 8 (2016), 762–774.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. 2017. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer. https://openreview.net/pdf?id=B1ckMDqlg

Mervyn Singer, Clifford S Deutschman, Christopher Warren Seymour, Manu Shankar-Hari, Djillali
Annane, Michael Bauer, Rinaldo Bellomo, Gordon R Bernard, Jean-Daniel Chiche, Craig M
Coopersmith, et al. 2016. The third international consensus definitions for sepsis and septic shock
(sepsis-3). Jama 315, 8 (2016), 801–810.

12

https://openreview.net/pdf?id=B1ckMDqlg

Reisa A Sperling, Paul S Aisen, Laurel A Beckett, David A Bennett, Suzanne Craft, Anne M Fagan,
Takeshi Iwatsubo, Clifford R Jack Jr, Jeffrey Kaye, Thomas J Montine, et al. 2011. Toward defining
the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimer’s & dementia 7, 3 (2011), 280–292.

Kirill Trapeznikov and Venkatesh Saligrama. 2013. Supervised sequential classification under budget
constraints. In Artificial intelligence and statistics. PMLR, 581–589.

Thomas P Trappenberg and Andrew D Back. 2000. A classification scheme for applications with
ambiguous data. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New
Millennium, Vol. 6. IEEE, 296–301.

Ilker Unal. 2017. Defining an optimal cut-point value in ROC analysis: an alternative approach.
Computational and mathematical methods in medicine 2017 (2017).

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of
Machine Learning Research 9, 2579-2605 (2008), 85.

Shikhar Vashishth, Prateek Yadav, Manik Bhandari, and Partha Talukdar. 2019. Confidence-based
graph convolutional networks for semi-supervised learning. In The 22nd International Conference
on Artificial Intelligence and Statistics. PMLR, 1792–1801.

Luke Vilnis and Andrew McCallum. 2015. Word Representations via Gaussian Embedding.. In ICLR.
http://arxiv.org/abs/1412.6623

Paul Viola and Michael J Jones. 2004. Robust real-time face detection. International journal of
computer vision 57, 2 (2004), 137–154.

Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and Joseph E Gonzalez. 2017.
Idk cascades: Fast deep learning by learning not to overthink. arXiv preprint arXiv:1706.00885
(2017).

Xin Wang, Jiawei Wu, Da Zhang, Yu Su, and William Yang Wang. 2019. Learning to compose topic-
aware mixture of experts for zero-shot video captioning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 8965–8972.

Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, and
Joseph E Gonzalez. 2020. Deep mixture of experts via shallow embedding. In Uncertainty in
Artificial Intelligence. PMLR, 552–562.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017. Aggregated
Residual Transformations for Deep Neural Networks. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017), 5987–5995.

Yanbo Xu, Siddharth Biswal, Shriprasad R Deshpande, Kevin O Maher, and Jimeng Sun. 2018.
RAIM: Recurrent Attentive and Intensive Model of Multimodal Patient Monitoring Data. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 2565–2573.

Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and S. Li. 2018. Occlusion-aware R-CNN:
Detecting Pedestrians in a Crowd. In ECCV.

Jingbo Zhu, Huizhen Wang, Eduard Hovy, and Matthew Ma. 2010. Confidence-based stopping
criteria for active learning for data annotation. ACM Transactions on Speech and Language
Processing (TSLP) 6, 3 (2010), 1–24.

13

http://arxiv.org/abs/1412.6623

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The primary goal of this work to offer a better trade-off
AUC and cost trade-off space and significantly better early hour prediction of sepsis
and shock

(b) Did you describe the limitations of your work? [Yes] Section 5 provides limitations of
proposed approaches.

(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Refer to Section
4

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The details of experimental setup are provided in Appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

Appendix

5.1 Training Algorithms

Algorithm 1 presents the Hard-Gating Training Algorithm, Algorithm 2 presents the Soft-Gating
Training Algorithm, and Algorithm 3 summarizes the End-to-End Training Algorithm.

Algorithm 1 Hard-gating Algorithm for In-Stage IDK Cascade

Input
Ds: Training data containing Ns samples in stage-s
Ms: Sorted list of the models trained for stage-s
C: Dictionary of models’ spatio-temporal costs
cs: User-defined budget of spatio-temporal cost for stage-s
q: Confidence function
maxA: Value for the upper bound of the cutoffs to avoid over-fitting
nBins: Number of bins for the grid search

Output
α∗

s: The optimal IDK cutoff vector for stage-s
1: procedure HARDGATING(Ds,Ms, cs, C, q, maxA, nBins)
2: α∗

s = [], ModelAssign = 1, cost =
∑

i,t C[ms1]
3: if cost > cs then return α∗

s
4: end if
5: for k in range(Ks − 1) do ▷ Bottom-up search
6: Idx4k ← ∪I(ModelAssign[i, t] == k).
7: if Idx4k is ∅ then break
8: end if
9: minQ← minIdx4k

{
qsk(xit)

}
10: maxQ← min(maxA,maxIdx4k

{
qsk(xit)

}
).

11: α∗
sk ← minQ.

12: for αsk in LinSpace(minQ,maxQ, nBins) do
13: IDK ← ∪Idx4kI

(
qsk(xit) ∈ [α∗

sk, αsk)
)

14: if IDK is not ∅ then
15: if cost+

∑
IDK C[msk+1]− C[mk] > cs then

16: α̂s ← α∗
s + [α∗

sk]; return α∗
s

17: end if
18: α∗

sk ← αsk,
19: ModelAssign[IDK]← k + 1,
20: cost+ =

∑
IDK C[msk+1]− C[mk]

21: end if
22: end for
23: α∗

s ← α∗
s + [α∗

sk]
24: end for
25: return α∗

s
26: end procedure

5.2 Data preparation

By following the definition of Sepsis-3 Singer et al. (2016), we identify the sepsis onset to be the
time when an increase in the Sequential Organ Failure Assessment (SOFA) score of 2 points or more
occurs in response to infections. We use the Sepsis-3 toolkit3 to obtain the suspected infection time in
patients, and following the process in Seymour et al. (2016) to finally label the onset of sepsis. We
result at a total number of 20, 009 sepsis patients out of the 52, 902 adult patients from MIMIC-III
database. We exclude those patients who stay in ICUs less than 6 hours and also exclude those
patients who developed sepsis within the first 6 hours after ICU admission. This reduces our cohort
to a total of 34, 475 ICU patient, and only 2, 370(6.8%) out of them are labeled as sepsis (because
88.1% of sepsis onsets happened within the first 6 hours after ICU admission and are excluded from
our study cohort). Then according to Singer et al. (2016), we identify the onset of septic shock as

3https://doi.org/10.5281/zenodo.1256723

15

https://doi.org/10.5281/zenodo.1256723

Algorithm 2 Soft-gating Algorithm for In-Stage IDK Cascade

Input
Ds: Training data containing Ns samples in stage-s
Ms: Sorted list of the models trained for stage-s
fMs : A multi-head DKD model for distilling all the model’s confidence at stage-s
C: Dictionary of models’ spatio-temporal costs
cs: User-defined budget of spatio-temporal cost for stage-s
q: Confidence function
λ: Controller for the spatio-temporal cost budget
µ: Controller for L1-norm sparsity regularization
nEpochs: Number of training epochs

Output
a∗
s, b

∗
s: the optimal soft-gating IDK coefficient for stage-s

1: procedure SOFTGATING(Ds,Ms, fMs , cs, C, q)
2: lr ← 1e− 1, e← 0, as ← 1, bs ← 0.5
3: while e < nEpochs do
4: q̂sj(xt)← q

(
f(xt;msk)[1]/

∑
f(xt;msk)

)
▷ DKD confidence distillation

5: Ls
sparse ←

∑
i,t,k || GIDK(q̂sj(xt)) ||1

6: Las,bs ← Ls
nll + λLs

cost + µLs
sparse

7: Optimize Las,bs using SGD
8: Reduce lr by factor 0.5 once learning stagnates.
9: e← e+ 1

10: end while
11: return a∗

s, b
∗
s

12: end procedure

Algorithm 3 End-to-End Training algorithm for UnfoldML

Input
D: Full training data containing N instances
M: Full model zoo
C: Dictionary of models’ spatio-temporal costs
q: Confidence criterion

Output
θ∗: the optimal ICK1 gate parameters
α∗ (or a∗, b∗): the optimal IDK gate parameters

1: procedure END-TO-ENDTRAINING(D,M)
2: Pre-allocate costs cs for each stage s.
3: Step 1: Learn in-stage IDK gate parameters.
4: for each stage s do
5: α∗ ← HardGating(Ds,Ms, cs, C, q)
6: or, a∗, b∗ ← SoftGating(Ds,Ms, cs, C, q)
7: end for
8:
9: Step 2: Learn ICK1 gate parameters.

10: for each model msk do
11: θ∗sk ← Grid Search for minimizing

√
ϵ2ICK1

+ ϵ2ICK0

12: end for
13: return α∗ (or a∗, b∗), θ∗

14: end procedure

16

Spatial-Temporal Cost
En

d-
to

-E
nd

 A
U

C

7 20 55 148

Figure 3: Confidence measure selection in Soft-Gating

0

0.5

1

1 2 3 4 5 6 7 8
0

0.1

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1 2 3 4 5 6 7 8
0

0.1

0.2

1 2 3 4 5 6 7 8 9 10

Stage-2

Stage-2

Stage-1

Stage-1

(i) Percent of model calls in Hard-Gating Cascade

(ii) Percent of model calls in Soft-Gating Cascade

Figure 4: Transitions in model calls: both cascades always call the first model per each stage for an entrance
and transition to next models (IDK) or next stage (ICK).
when a vasopressor is required to maintain a mean arterial pressure (MAP) ≥ 65 mm Hg and serum
lactate level > 2 mmol/L (> 18 mg/dL). We result at 229(9.7%) septic shock patients out of the
2, 370 sepsis patients.

For feature generation, we extract 8 patient static characteristics including age, gender, race, height,
weight, sepsis onset hour since ICU admission, whether diagnosed diabetes or on a ventilator at ICU
admission. Then we extract the dynamic features by obtaining the 8 vital signs, 16 lab measurements,
6 vassopressors, continuous replacement therapies (CRRT), ventilation, 2 intravenous fluids in fluid
resuscitation, and 5 additional measurements that are recommended for monitoring during sepsis
management. The 8 vital signs include heart rate, systolic blood pressure, diastolic blood pressure,
mean blood pressure, respiration rate, temperature, SpO2 and glucose. The 16 lab measurements in-
clude Anion gap, Albumin, Bands, Bicarbonate, Bilirubin, Creatinine, Chloride, Glucose, Hematocrit,
Hemoglobin, Lactate, Platelet, Potassium, PTT, INR, PT, Sodium, BUN and WBC. The 6 vasopres-
sors include dobutamine, dopamine, epinephrine, norepinephrine, phenylephrine, and vasopressin.
The 2 fluids include Crystalloids and Colloids that are recommended in the early management of
sepsis Rhodes et al. (2017), and particularly fluid resuscitation of bolus ≥ 500 mL is one of the
most common treatment for managing septic shock. The 5 additional measurements include whether
a vasopressor is needed to maintain a mean arterial pressure (MAP) ≥ 65 mm Hg, serum lactate
level > 2 mmol/L, urine output ≥ 5 ml/kg/hr, venous oxygen saturation (SvO2) ≥ 70% and central
venous pressure (CVP) of 8 − 12 mmHg. We fill missing values like lab measurements using the
last measured value; we clamp real-valued features in between their 0.05-quantile and 0.95-quantile
values respectively and normalize the features using min-max normalization.

For training sepsis prediction models, we take the full training cohort but discard the data after the
first sepsis onset in sepsis patients, then we label the data per hour, and label the current sepsis
outcome as 1 if the true sepsis is going to happen in the next 12 hours (designed for early prediction
on sepsis). For training shock prediction models, we take the sepsis sub training cohort and discard
the data before sepsis onset. We also discard the data after septic shock onset in shock patients. Then
we label in the same way as for sepsis, i.e. label the current shock outcome as 1 if the true shock will
take place in the next 12 hrs. For those non sepsis patients, we discard the first 12 hrs data after ICU

17

Model Zoo Dirichlet Knowledge Distillation (DKD)

Model AUC Computational Data Total AUC MAE MAE MAE MAE
Cost Modality Norm. Cost Confidence Entropy of Exp. Entropy MI

vitals_1hr.h100.nlayer1 74.5% 5 1 0.10 74.4% 0.07 0.13 0.08 0.05
vitals_6hr.h100.nlayer1 78.2% 7 1 0.11 74.7% 0.06 0.11 0.07 0.05
vitals_6hr.h100.nlayer3 79.7% 172 1 0.54 74.8% 0.08 0.14 0.09 0.06
vitals_6hr.h300.nlayer2 81.1% 173 1 0.54 75.0% 0.08 0.14 0.09 0.06
vitals_12hr.h200.nlayer4 82.3% 175 1 0.55 70.5% 0.09 0.16 0.10 0.10
vitals_labs_1hr.h100.nlayer1 76.8% 5 2 0.20 74.0% 0.06 0.11 0.07 0.04
vitals_labs_6hr.h100.nlayer1 81.8% 86 2 0.41 74.0% 0.06 0.12 0.08 0.04
vitals_labs_6hr.h100.nlayer2 82.6% 257 2 0.86 73.5% 0.06 0.12 0.08 0.05
vitals_labs_6hr.h100.nlayer3 82.5% 258 2 0.86 74.2% 0.08 0.14 0.09 0.05
vitals_labs_csu_1hr.h100.nlayer1 78.3% 5 3 0.30 73.8% 0.07 0.13 0.09 0.05
vitals_labs_csu_6hr.h100.nlayer1 81.6% 90 3 0.52 73.4% 0.08 0.14 0.10 0.05
vitals_labs_csu_6hr.h400.nlayer1 81.6% 258 3 0.96 73.5% 0.05 0.11 0.07 0.05
vitals_labs_csu_6hr.h400.nlayer3 83.5% 259 3 0.97 73.7% 0.07 0.13 0.08 0.06
vitals_labs_csu_6hr.h300.nlayer3 82.2% 264 3 0.98 73.5% 0.07 0.14 0.08 0.07
vitals_labs_csu_6hr.h100.nlayer2 81.8% 272 3 1.00 73.2% 0.09 0.15 0.10 0.06
vitals_labs_csu_12hr.h300.nlayer4 85.1% 268 3 0.99 72.6% 0.09 0.16 0.10 0.07

Table 5: Sepsis-Stage model zoo

Model Zoo Dirichlet Knowledge Distillation (DKD)

Model AUC Computational Data Total AUC MAE MAE MAE MAE
Cost Modality Norm. Cost Confidence Entropy of Exp. Entropy MI

vitals_1hr.h100.nlayer1 87.0% 5 1 0.23 87.1% 0.05 0.07 0.04 0.03
vitals_6hr.h100.nlayer1 88.6% 7 1 0.23 86.7% 0.04 0.08 0.06 0.03
vitals_6hr.h100.nlayer3 88.4% 172 1 0.28 86.9% 0.04 0.08 0.06 0.03
vitals_6hr.h300.nlayer2 86.8% 173 1 0.28 86.5% 0.04 0.07 0.06 0.03
vitals_12hr.h300.nlayer2 88.6% 174 1 0.29 86.0% 0.04 0.09 0.07 0.03
vitals_12hr.h200.nlayer4 88.6% 175 1 0.29 85.3% 0.04 0.09 0.06 0.04
vitals_12hr.h300.nlayer3 85.1% 177 1 0.29 85.3% 0.05 0.11 0.08 0.04
vitals_12hr.h400.nlayer3 89.5% 189 1 0.29 85.6% 0.03 0.07 0.05 0.02
vitals_labs_1hr.h100.nlayer1 89.0% 5 2 0.45 85.4% 0.03 0.06 0.04 0.03
vitals_labs_6hr.h100.nlayer1 89.8% 86 2 0.48 86.1% 0.04 0.08 0.05 0.04
vitals_labs_6hr.h100.nlayer2 89.9% 257 2 0.54 85.4% 0.03 0.06 0.04 0.04
vitals_labs_6hr.h300.nlayer1 87.7% 258 2 0.54 84.0% 0.03 0.07 0.04 0.04
vitals_labs_6hr.h200.nlayer2 89.8% 263 2 0.54 87.4% 0.04 0.09 0.06 0.04
vitals_labs_12hr.h300.nlayer4 93.5% 262 2 0.54 82.9% 0.01 0.03 0.02 0.01
vitals_labs_12hr.h200.nlayer4 90.7% 270 2 0.54 89.1% 0.01 0.04 0.02 0.02
vitals_labs_csu_1hr.h100.nlayer1 90.8% 5 3 0.68 86.2% 0.04 0.09 0.06 0.04
vitals_labs_csu_6hr.h100.nlayer1 91.9% 90 3 0.71 86.3% 0.04 0.10 0.06 0.05
vitals_labs_csu_1hr.h100.nlayer4 90.2% 172 3 0.73 86.7% 0.02 0.05 0.04 0.02
vitals_labs_csu_6hr.h200.nlayer2 88.9% 258 3 0.76 86.3% 0.02 0.06 0.04 0.03
vitals_labs_csu_6hr.h300.nlayer3 88.7% 264 3 0.77 88.0% 0.01 0.02 0.01 0.01
vitals_labs_csu_12hr.h200.nlayer3 92.1% 287 3 0.78 86.2% 0.02 0.05 0.03 0.02
vitals_labs_csu_med_1hr.h100.nlayer1 91.5% 5 4 0.90 85.5% 0.03 0.06 0.03 0.05
vitals_labs_csu_med_6hr.h100.nlayer1 91.6% 86 4 0.93 87.3% 0.03 0.07 0.04 0.04
vitals_labs_csu_med_6hr.h400.nlayer1 91.4% 257 4 0.99 87.1% 0.03 0.08 0.05 0.04
vitals_labs_csu_med_6hr.h300.nlayer3 90.4% 259 4 0.99 86.4% 0.03 0.07 0.05 0.03
vitals_labs_csu_med_12hr.h100.nlayer2 93.4% 262 4 0.99 83.3% 0.00 0.01 0.01 0.01
vitals_labs_csu_med_12hr.h400.nlayer4 93.4% 269 4 0.99 84.7% 0.02 0.06 0.02 0.04

Table 6: Septic Shock-Stage model zoo

admission to reduce data noises and randomly sample a sequence length between 12 hrs up to 7 days
per each non sepsis patients. More details of data prepossessing are provided in the attached code.

5.3 Model Zoo

Computational cost was measured in ms as the total running time of feeding all the test data (with
batch size of 256) calling each individual models on a single GeForce RTX 2080Ti divided by the
total number of calls. Then we multiply the cost by 10 as the GPU is approximately 10X hardware
cost comparing to a CPU. Future work can extend the model zoo to include CPU models or running
all the models on CPUs based on resource specifications. Table 5 and Table 6 respectively show the
model prediction AUC scores on the validation set for the sepsis and septic shock stages.

In addition, we also fit small DKD surrogate models for distilling the predictive probabilities and
confidence of the models in the zoo. The DKD model is a 4-layer MLP taking the embedding vectors
from the first model in each stage, so it obtains similar AUC scores on the validation set comparing
to the early models in the zoo but much lower scores comparing to the later heavier models. But the
mean absolute errors (MAE) of the DKD model on estimating confidence measures of the original
models are consistently small, which is beneficial for our soft-gating algorithm that requires only
confidence estimation instead of predictive probabilities.

18

. . .
Pr

ob
ab

ili
ty

of
 S

ep
si

s

Length of Stay (Hours)

Sepsis Models
Septic shock

Models

IDK thresholds

ICK thresholds

Predicted Onset

Real Onset

0

1

0

1

1 2 3 4 5 6 7 8 9 19
Probability of
Septic Shock

Figure 5: A timeline shown for an example shock patient. The y-axis represents probabilities of sepsis (left) and
septic shock (right). The x-axis represents patient’s length of stay (hours). This figure illustrates how different
models are selected based on patient’s critical health condition and timely septic shock prediction is made in
cost-efficient manner.

Full test cohort
A selected example patient

Figure 6: Dynamic model allocations in the UnfoldML: the example shock patient (in large-sized marker)
transitioned from cheaper model in sepsis (dot) stage to costlier model in shock stage (cross).

5.4 Model Utilization in UnfoldML.

We analyze model utilization frequency (the proportion of how many times a model was invoked)
in our test cohort and compare model frequencies for hard and soft gating in Figure 4 (models are
grouped into 8 groups for Stage 1 and 10 groups for Stage 2): soft gating can skip invocations of
many models and directly select the more confident models for faster transitioning to shock stage.

where ψ is the digamma function defined as the logarithmic derivative of the gamma function, α0 and
α1 are the concentration parameters estimated by the DKD models. More definitions are in Malinin
and Gales (2018). We show “Entropy of expected” exhibits the best AUC-Cost trade-off path in
Figure 3.

5.5 Qualitative Evaluation

We walk through an example shock patient’s length of stay in ICU from the test set, and deploy
the proposed multi-stage prediction pipeline on it. UnfoldML starts the prediction of sepsis with
a cheaper model as seen in Figure 5. At t=2, the model’s prediction probability reaches the IDK
threshold which signifies model’s uncertainty in sepsis prediction. Hence, the UnfoldML switches to
a costlier and more accurate model (a similar trend is observed at t=4,7). At t=5, UnfoldML predicts
sepsis onset as the probability of sepsis prediction reaches ICK threshold. Note, once sepsis onset is
predicted by the cascade, it switches to a cheaper model which predicts septic shock (Stage-2). Due
to early switching, UnfoldML can detect septic shock significantly earlier. In Stage-2, UnfoldML
transitions to costlier model once the cheaper model becomes uncertain. Lastly, it predicts septic
shock once the probability of septic shock detection reaches the ICK1 threshold.

Additionally, we randomly slice 35k time-steps from the sequential data in the test set and visualize
them in a TSNE Van der Maaten and Hinton (2008) plot in Figure 6 based on their embedding vectors

19

generated from the LSTMs in the model zoo. Different colors show the different model allocations
for the subsampled test data points, sepsis (dot) and shock (cross) stages are clearly separated in to
the left and right regions of the 2-D transformation space. We highlight the picked shock patient
(with significantly large markers) showing its dynamic model allocations and stage transitions within
UnfoldML.

20

	Introduction
	Related Work
	Multi-Stage Dynamic Prediction Pipeline
	Problem Formulation
	Gate Parameters Learning
	Hard-gating Training Algorithm
	Soft-gating Training Algorithm
	Overall Training Algorithm

	Experiments
	Task 1: Sepsis-Septic Shock prediction
	Experimental Setup
	Evaluation and Results

	Task 2: Subcategory Classification
	Experimental Setup
	Evaluation and Results

	Conclusion
	Training Algorithms
	Data preparation
	Model Zoo
	Model Utilization in UnfoldML.
	Qualitative Evaluation

